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Warning: Check Geometry Triangles
Welcome to a collection of ”flashcard.” What I mean by that is functions,

theorems, postulates, and shortcuts to assist you in your mathematical journey
of life.

1 Algebra

1.1 Basic Properties

1.1.1 Commutative Property of Addition:

Changing the order of addends does not change the sum.

x+ y = y + x (1)

1.1.2 Commutative Property of Multiplication:

Changing the order of factors does not change the product.

x · y = y · x (2)

1.1.3 Associative Property of Addition:

When the addition of three or more numbers, the total/sum will be the same,
even when the grouping of addends are changed.

x+ (y + z) = (x+ y) + z (3)

1.1.4 Associative Property of Multiplication:

When performing a multiplication problem with more than two numbers, it does
not matter which numbers you multiply first.

x · (y · z) = (x · y) · z (4)
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1.1.5 Distributive Property:

When presented with a number that is seemingly multiplied by an expression
within grouping symbols (parentheses/brackets), each term within the group is
multiplied by the number on the outside.

x · (y ± z) = (x · y)± (x · z) (5)

1.1.6 Identity Property for Addition:

When adding 0 to any number, the result is the number itself.

x+ 0 = x (6)

1.1.7 Identity Property for Multiplication:

When multiplying 1 to any number, the result is the number itself.

x · 1 = z (7)

1.1.8 Inverse Property for Addition:

When adding a number and its inverse together, the sum will always be zero.

x+ (−x) = 0 (8)

1.1.9 Zero Product Property of Multiplication:

When multiplying 0 to any number, the result will always be the 0.

x · 0 = 0 (9)

1.2 General Formulas

1.2.1 Quadratic Formula:

x =
−b2 ±

√
b2 − 4ac

2a
(10)

1.3 Polynomials

1.3.1 Quadratic Polynomials:

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

a2 − b2 = (a+ b)(a− b)

a2 + b2 = (a+ b)2 − 2ab = (a− b)2 + 2ab

(11)
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2 Basic Geometry

2.1 Types of Angles

2.1.1 Angle

An angle is a union of two rays with a common endpoint.

2.1.2 Right Angle

A right angle is an angle with a measure of 90◦.

2.1.3 Acute Angle

An acute angle is an angle with a measure between 0◦ and 90◦.

2.1.4 Obtuse Angle

An obtuse angle is an angle with a measure between 90◦ and 180◦.

2.1.5 Complementary Angles

Two angles are complementary if the sum of their measures is 90◦.

2.1.6 Supplementary Angles

Two angles are supplementary if the sum of their measures is 180◦.

2.2 Types of Triangles

2.2.1 General Triangle

A three-sided figure.
Area: A = 1

2bh
Perimeter: P = a+ b+ c
Sum of the measures of the angles is 180◦.

2.2.2 Equilateral Triangle

An equilateral triangle is a triangle that has three equal sides.

2.2.3 Isosceles Triangle

An isosceles triangle is a triangle that has two equal sides.

2.2.4 Scalene Triangle

A scalene triangle is a triangle in which all three sides are in different lengths,
and all three angles are of different measures.
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2.2.5 Similar Triangles

Similar Triangles are triangles that have the same shape. Their corresponding
angles are equal and corresponding sides are proportional.
Example: a

d = b
e = c

f

2.2.6 Right Triangle

A triangle is a 90◦ angle.
Area: A = 1

2ab
Perimeter: P = a+ b+ c
Pythagorean Theorem: A triangle is a right triangle if and only if a2 + b2 = c2

2.2.7 45-90-45 Right Triangle

A right triangle who’s other angles are 45◦. The hypotenuse is
√
2 given the

base and height are equal to 1.

2.2.8 30-60-90 Right Triangle

A right triangle who’s other angles are 60◦ and 30◦. The side opposite the 30◦

is 1
2 the length of the hypotenuse.

2.3 Other 2D Shapes

2.3.1 Trapezoid

A four-sided figure with one pair of parallel sides.
Area: A = 1

2h(b1 + b2)

2.3.2 Parallelogram

A four-sided figure with opposite sides parallel.
Area: A = bh

2.3.3 Rectangle

A four-sided figure with four right angles.
Area: A = LW
Perimeter: P = 2L+ 2W

2.3.4 Rhombus

A four-sided figure with four equal sides.
Perimeter: P = 4a
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2.3.5 Square

A four-sided figure with four equal sides and four right angles.
Area: A = s2

Perimeter: P = 4s

2.3.6 Circle

Area: A = πr2

Circumference: C = 2πr
Diameter: d = 2r
Value of pi: π ≈ 3.14

2.3.7 Sphere

Volume: V = 4
3πr

3

Surface Area: s = 4πr2

2.3.8 Right Circular Cone

Volume: V = 1
3πr

2h

Lateral Surface Area: S = πr
√
r2 + h2

2.3.9 Right Circular Cylinder

Volume: V = πr2h
Lateral Surface Area: S = 2πrh

2.3.10 Rectangular Solid

Volume: V = LWH
Surface Area: A = 2LW + 2WH + 2LH

3 Trigonometry

In this section, you’ll be presented with a flashcard based around Trigonometry.
There will be the simple and the advanced, ordered by difficulty.
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3.1 Domain of Basic Trigonometric Functions:

sin(x), {x | x = R}
cos(x), {x | x = R}

tan(x),

{
x | x ̸=

(
n+

1

2
π, n = Z

)}
csc(x), {x | x ̸= nπ, n = Z}

sec(x),

{
x | x ̸=

(
n+

1

2
π, n = Z

)}
cot(x), {x | x ̸= nπ, n = Z}

(12)

3.2 Range of Basic Trigonometric Functions:

− 1 ≤ sin(x) ≤ 1

− 1 ≤ cos(x) ≤ 1

−∞ < tan(x) < ∞
−∞ < cot(x) < ∞
sec(x) ≥ 1 AND sec(x) ≤ −1

csc(x) ≥ 1 AND csc(x) ≤ −1

(13)

3.3 Right Triangle Definition:

sin(x) =
opposite

hypotenuse

cos(x) =
adjacent

hypotenuse

tan(x) =
opposite

adjacent

csc(x) =
hypotenuse

opposite

sec(x) =
hypotenuse

adjacent

cot(x) =
adjacent

opposite

(14)

3.4 Degrees ↔ Radians Conversions:

Degrees · π

180◦
= Radians

Radians · 180
◦

π
= Degrees

(15)
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3.5 Tangent and Cotangent Identities:

tan(x) =
sin(x)

cos(x)

cot(x) =
cos(x)

sin(x)

(16)

3.6 Reciprocal Identities:

csc(x) =
1

sin(x)

sec(x) =
1

cos(x)

cot(x) =
1

tan(x)

(17)

3.7 Even - Odd Identities:

sin(−x) = −sin(x)

cos(−x) = cos(x)

tan(−x) = −tan(x)

csc(−x) = −csc(x)

sec(−x) = sec(x)

cot(−x) = −cot(x)

(18)

3.8 Inverse Trigonometric Functions

3.8.1 Definition:

y = sin−1(x) is equivalent to x = sin(y)

y = cos−1(x) is equivalent to x = cos(y)

y = tan−1(x) is equivalent to x = tan(y)

(19)

3.8.2 Inverse Properties:

cos(cos−1(x)) = x

sin(sin−1(x)) = x

tan(tan−1(x)) = x

cos−1(cos(x)) = x

sin−1(sin(x)) = x

tan−1(tan(x)) = x

(20)
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3.8.3 Domain and Range of Inverse Trigonometric Functions (Re-
spectively):

y = sin−1(x) , − 1 ≤ x ≤ 1 , − π

2
≤ y ≤ π

2

y = cos−1(x) , − 1 ≤ x ≤ 1 , − 0 ≤ y ≤ π

y = tan−1(x) , −∞ < x < ∞ , − π

2
< y <

π

2

(21)

3.8.4 Alternate Notations:

sin−1(x) = arcsin(x)

cos−1(x) = arccos(x)

tan−1(x) = arctan(x)

(22)

3.9 Pythagorean Identities:

sin2(x) + cos2(x) = 1

tan2(x) + 1 = sec2(x)

1 + cot2(x) = csc2(x)

(23)

3.10 Sum and Difference Formulas:

sin(x± y) = sin(x)cos(y)± cos(x)sin(y)

cos(x± y) = cos(x)cos(y)∓ sin(x)sin(y)

tan(x± y) =
tan(x)± tan(y)

1∓ tan(x)tan(y)

(24)

3.11 Half-Angle Formulas:

sin
(x
2

)
= ±

√
1− cos(x)

2

cos
(x
2

)
= ±

√
1 + cos(x)

2

tan
(x
2

)
=

(1− cos(x))

sin(x)

(25)

3.12 Double-Angle Formulas:

sin(2x) = 2sin(x)cos(x)

cos(2x) = cos2(x)− sin2(x) = 1− 2sin2(x) = 2cos2(x)− 1

tan(2x) =
2tan(x)

1− tan2(x)

(26)
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3.13 Co-Function Identities:

cos
(π
2
− x

)
= sin(x)

sin
(π
2
− x

)
= cos(x)

tan
(π
2
− x

)
= cot(x)

cot
(π
2
− x

)
= tan(x)

csc
(π
2
− x

)
= sec(x)

sec
(π
2
− x

)
= csc(x)

(27)

3.14 Periodicity Identities:

sin(x± 2π) = sin(x)

cos(x± 2π) = cos(x)

tan(x± π) = tan(x)

cot(x± π) = cot(x)

sec(x± 2π) = sec(x)

csc(x± 2π) = csc(x)

(28)

3.15 Sum to Product Formulas:

sin(x)± sin(y) = 2sin

(
x± y

2

)
cos

(
x∓ y

2

)
cos(x) + cos(y) = 2cos

(
x+ y

2

)
cos

(
x+ y

2

)
cos(x)− cos(y) = −2sin

(
x+ y

2

)
sin

(
x− y

2

) (29)

3.16 Product to Sum Formulas:

sin(x) · sin(y) = 1

2
[cos (x− y)− cos (x+ y)]

cos(x) · cos(y) = 1

2
[cos (x− y) + cos (x+ y)]

sin(x) · cos(y) = 1

2
[sin (x+ y) + sin (x− y)]

cos(x) · sin(y) = 1

2
[sin (x+ y)− sin (x− y)]

(30)

3.17 Law of Sines:
a

sin(A)
=

b

sin(B)
=

c

sin(C)
(31)
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3.18 Law of Cosines:

a2 = b2 + c2 − 2bc · cos(A)

A = cos−1

(
b2 + c2 − a2

2bc

)
(32)

3.19 Law of Tangents:

a− b

a+ b
=

tan
(
1
2 (α− β)

)
tan

(
1
2 (α+ β)

)
b− c

b+ c
=

tan
(
1
2 (β − γ)

)
tan

(
1
2 (β + γ)

)
a− c

a+ c
=

tan
(
1
2 (α− γ)

)
tan

(
1
2 (α+ γ)

)
(33)

3.20 Mollweide’s Formula:

a+ b

c
=

cos
(
1
2 (α− β)

)
sin

(
1
2γ

) (34)
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